Select Page

Image source: YouTube Video Screenshot
The light emitted by massive black holes from the early universe is so strong that even our telescopes can catch it. Scientists say these distant black holes, or quasars, can cast signals which travel more than 13 billion light years to find us. A team of researchers spent time studying those signals recently.
Researchers from the Georgia Institute of Technology, Dublin City University, Michigan State University, the University of California at San Diego, the San Diego Supercomputer Center and IBM conducted a study which they believe could shed light on how massive black holes from the early universe formed. They explained how the formation of a black hole can disrupt the formation of a regular star.
The study was published in the journal Nature, and it was backed by the National Science Foundation, the European Union and NASA. The results suggest massive black holes may be more common than previously thought.
“In this study, we have uncovered a totally new mechanism that sparks the formation of massive black holes in particular dark matter halos,” lead author John Wise of the Center for Relativistic Astrophysics at Georgia Tech said in a statement. “Instead of just considering radiation, we need to look at how quickly the halos grow. We don’t need that much physics to understand it—just how the dark matter is distributed and how gravity will affect that. Forming a massive black hole requires being in a rare region with an intense convergence of matter.”
To conduct the study, scientists used the Renaissance Simulation suite, a 70-terabyte data set compiled on the Blue Waters supercomputer between 2011 and 2014. They believe the data could suggest how the universe grew during its earliest days. To learn more about areas where massive black holes were likely to develop, they studied the data and

Article From: "Danica Simic"   Read full article